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ELASTIC--PLASTIC STATE OF A WEDGE WITH LIMITING RESISTANCE TO 

SHEAR AND SEPARATION 

Io T. Artem'ev and D. D. Ivlev UDC 539.375 

The equilibrium of an acute-angled wedge is examined under plane strain conditions under 
the action of a uniformly distributed load q applied along the normal to one of its faces 
(Fig. I) in the presence of strength limits k > 0, d > 0 to shear and separation [I] such 
that the tangential and normal stress components would satisfy the conditions ~max ~ k, 
ama x ~ d. The domain in which the maximal stress components do not reach these limits will 
be considered elastic. 

In contrast to an elastic--plastic wedge (with a limiting resistance to just shear [2]), 
in this case the size of the limit state zone depends on not only the magnitude but also the 
direction of the load (q > O, q < 0). Intervals of the load q that correspond to different 
qualitative states of the wedge are determined. 

I. In the general case the wedge is separated into three zones l-IIl (Fig. I) in which 
shear, elastic, and separation states, respectively, occur. The equations for the stress in 
zone I are of hyperbolic type and have two orthogonal families of rectilinear characteristics 
inclined to the free boundary at the angle ~/4, while the equations in zone III are of para- 
bolic type and have one family of characteristics orthogonal to the principal stress [I]. A 
uniform stressed state is realized in zones I and III and the boundaries with zone II are 
rectilinear. 

Let us ascribe the superscripts minus and plus, respectively, to the stress tensor com- 
ponents in zones I and III. Here the principal stresses have the definite values 

~7 o, ~ :  - 2 k ,  ~=d, + = . = ~ 2  = - - q "  

The stress states in zones I and III are interpreted by Mohr diagrams in Fig. 2. The 
normal and tangential stress tensor components can evidently be defined in terms of the prin- 
cipal stresses on the lines OB and OC separating the three zones and making the angles ~ and 

with the wedge faces (see Fig. I). We have in the r, 8 polar coordinates 

ksin2~, 
~ ,  ~T = k(•  cos2=-- t), ~r~ = ~$, ~ = p ~ pcos2~, ~ = psin2g, ( 1 . 1 )  
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where p = (I/2)(d -- q), p = (I/2)(d + q) are coordinates of the center and radius of the Mohr 
circle in Fig. 2b. 

Following [3], we represent the stress components in the elastic zone II in the form 

Or, O 0 = A - -  2D0  • ( B s i n 2 O  ~ C c o s 2 O ) , T r 0 ~  D + B c o s 2 0  - -  C s i n  20.  ( 1 . 2 )  

We agree to measure the angle e so that 8 = 0 on the boundary OB and e = y -- e -- B = 6 

on OC. Then from the condition of stress continuity on the lines e = 0 and e = 6 a system of 
six equations follows from (1.1) and (1.2) 

p • p c o s 2 6 - -  A - - 2 D 8  +_ ( B s i n 2 8 - ~  Ccos2~),  

k(~ c o s 2 u - - t ) =  A • C, k s i n 2 a =  D + B ,  

p sin 26 = D + B cos 28 - -  C sin 28. 

We use four of them to eliminate the arbitrary constants 

A ~ - - k ,  C =  - - k c o s 2 ( z , O - - - - -  - -  (k  -}- p ) / 2 8 ,  

B = (p cos 26 ~- k cos 2c~ cos 20)/sin 28. 

T h e  r e m a i n i n g  t w o  e q u a t i o n . s  r e d u c e  t o  t h e  f o r m  

k cos 2(7 - -  ]3) + p cos 2~ ~ g(2~)-* sin 28, ( 1 . 3)  

p cos 2(7 -- ~) -4- k cos 2a ~ g(28i -1 sin 28, 

where g = k + p. 

Let us introduce the notation X = B -- ~. Subtracting (I .3) term by term, we find 

X = a r c t g ( k ~  tg 7 ) .  ( 1 . 4 )  

The angular dimensions of the separation and shear zones are determined from the geo- 

metric condition y = ~ + B + ~ with (1.4) taken into account: 

~= (I12)(~ --8--x), 6 = (I/2)(~ --8+ x). 

For the final solution of the problem under consideration about the equilibrium of an 

elastic--plastic wedge for a limiting resistance to shear and separation there remains to ex- 

press the function 6(q) whose specific form depends on the interval in which the external load 

q is found, from (1.3). 

2. A load interval 0 < q < q~ evidently exists for which the wedge is completely in the 

elastic state. Here ~ = B = 0, ~ = y, the stress on the loaded face o r = ~ should not reach 
the limit of the resistance to separation, and on the free face gr~ --2~ should not reach the 
limit of the resistance to,shear, i,e., 0</<d, 0 < • Moreover, 0 = (I/2)(I + q), p = 

(I/2)(I -- q). Taking these conditions into account, we have from (1.3) 

p =  u =  (1/2) q (1 - -  ? ctg 7) -1, l = q(? -1 tg ? - -  t). -1 

If the parameters 0 and~reach the limit k as the load q grows, then the plasticity condition 
occurs simultaneously on both faces. Under higher loads, two plastic zones are formed in 
this case, which abut on the wedge faces and have identical size. Such a limit state is in- 
vestigated in detail in [2]. 

146 



However, if the stress ~ reaches the limit d earlier than p reaches the value k, then 

the separation condition 

q = q 1 =  d ( ? - l t g ?  - -  t), p = ( l /2) (d+ ql) < k 

o c c u r s  on t h e  l o a d e d  f a c e  o f  t h e  w e d g e .  T h i s  l a t t e r  c o n d i t i o n  i s  e x p r e s s e d  i n  t h e  f o r m  o f  a 
constraint for the separation strength limit at which the wedge separation strength state 

under consideration will occur: 

d <  2kyctg? .  

I t  i s  h e n c e  s e e n  t h a t  d ~ 0 f o r  y ~ ~ / 2 ,  i . e . ,  t h e  c o n s t a n t  d l o s e s  t h e  m e a n i n g  o f  t h e  s e p a -  
r a t i o n  strength limit for an obtuse-angled wedge. The zone of the limit separation strength 
only occurs in an acute-angled wedge. 

A limiting separation strength zone abutting on the loaded face OD occurs in the load 
interval ql < q < qi, and an elastic state in the rest. The stress on the free face OA o r = 
--2• will not reach the limit corresponding to the plasticity state o r = --2k. Conse- 
quently, by substituting the parameter u instead of k, and ~ = 0, B = y -- 6, we find from 

(I .3) 

• ~ p(ctg 5 sih 27 - -  cos 27), ( 2 . 1 )  
p ~ d[i ~ cos 2? + (5 sin-2.8 - -  ctg 5) sin 2?] -1. 

Since q = 2p -- d, this latter equations expresses the dependence between the dimension 6 of 
the elastic zone and the load q in the interval under consideration. The plasticity condi- 
tion • =k occurs for a load q = q2 on the free face. Here a = 0, ~= u -- 5 and after elimi- 
nation of 6, Eqs. (1.3) reduce to the following 

p s i n i ?  ~ d - - p )  p s i n i ?  
k - -  pcos i ?  --tg k2 ~ p ~ i k p c o s i ? .  

The value of p satisfying this latter equation permits finding the load q2 = 20 -- d. For a 
load in the interval q2 < q < q3 a limiting shear strength zone abutting on the free face of 
the wedge and a limiting separation strength zone abutting on the loaded face occur (see Fig. 
I). They are separated by an elastic zone which diminishes as q increases and close up at 
the definite load q = q3. Zones I and III adjoin, i.e., 6 = 0, a + 6 = y and we obtain the 
following condition from (1.3) 

k c o s i ~  + p c o s i ~  = k + p. ( 2 . 2 )  

S t a r t i n g  f r o m  ( 1 . 2 ) ,  d i f f e r e n c e s  i n  t h e  c o r r e s p o n d i n g  s t r e s s  c o m p o n e n t s  c a n  b e  c o m p i l e d  
f o r  t h e  g e n e r a l  c a s e  5 x 0 

[Tre]= ( k c o s i a - - p c o s i ~ ) t g S ,  

[~r ], [~0 ] =  ( k + p )  • ( k c o s i ~ p c o s i ~ ) .  

In the limit case 5 § 0 the tangential component of the stress remains continuous, since 
the difference [Tre] tends to zero. According to (2.2), the normal component ~e retains its 
continuity [o 0] = 0 but the stress o r undergoes a discontinuity [~r] = 2(k + p). 

Therefore, in the limit case of the load q = q3 the elastic zone II degenerates into a 
line of stress discontinuity. This equilibrium state of the wedge is investigated in [4]. 
In particular, from the continuity condition for the two stress components [dO] = 0 and [Tr0 ] = 
0 the following value is found 

Eliminating the parameters ~ and ~ directly from (1.3), we obtain a dependence between 
the size of the elastic zone and the load in the interval q2 < q < q3 

5 - 1 s i n ~ = ( i  - -  ~-~ --  pk-~)-~/ t  - -  p~k-? + 2pk-~cosi?.  ( 2 . 3 )  

A graphical interpretation of the dependence ~(q) on the basis of (2.]) and (2.3) is 
presented in Fig. 3 for different wedges for identical shear and separation strength limits 
d, k. The transitions of the quantitative stress changes into qualitative changes of state 
of the wedge limit resistance that occur under the loads qz, qi, q3 correspond to the points 
A, B, C. 

3. The separation, elasticity, and shear zones also occur under a uniformly distributed 
load applied along the external normal to the face OA (tension). The stress tensor compo- 
nents on the lines OB and OC will be expressed as follows: 
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~0-' ~ 1 7 6  T ~ = k s i n 2 o ~ ,  

o~, o+ _= (~/2) ~ (t +_ cos2~), ~ =  (1/2) d =in 2~. 

The stress components are represented in the form (1.2) in the elastic zone II. As is 
Sec. 2, we find four constants from the six connection conditions on the lines O = 0 and O = 

A---- q - - k ,  C---- --kcos2a, D---- --g~/26, 

B = (Pl cos 2~ -t- k cos 2~ cos 28)/sin 28, 

P l =  d/2, gl~--- P i +  k--q, 

a n d  we f i n d  two e q u a t i o n s  ( 1 . 3 )  i n  w h i c h  p a n d  g s h o u l d  b e  r e p l a c e d  b y  01 a n d  g l ,  r e s p e c t i v e l y .  

T h e  c o n s t a n t s  q l ,  q 2 ,  q 3 ,  w h i c h  h a v e  t h e  p r e v i o u s  m e a n i n g  ( S e c .  2 ) ,  a r e  f o u n d  i n  t h e  f o r m  

q~ = d(i - -  ? ctg?~, 

(d ~ + 4k 2 -I- 4dk cos 2?) (? - -  X~) 
qz = (i]2) d -t- k - -  2d sin 2? ' 

q. = O/2)d + k  - -  0/2) ] /h~ +'4k~ + 4 k d  cos 27, 

where XI is determined as X in (1.4) for p = Pl. 

Even here there is evidently three separation, elasticity, and shear zones only for an 
acute-angled wedge. Indeed, for y >i 7/2, ql >~ d, i.e., the separation condition occurs in an 
obtuse-angled wedge not only on the OD face of zone III but also on the OA face of zone I 
where separation occurs along OA. Consequently, for y >~ ~/2 the- examination of zone I as a 
shear zone is unacceptable here. 

The dependence between the size of the elastic zone ~ and the load q in the intervals 
ql < q < q2 and q2 < q < q3 is given by the respective formulas 

~ V~ ~ + 4~ ~ + ~dk co= 27 
q = k i t  d - -  2 s in5  " 

A graphical interpretation of these dependences is represented in Fig. 4. Qualitatively 
it duplicates the dependences in Fig. 3 but the processes corresponding to points A, B, C set 
in at lower loads ql, q2, q3 in this latter case. In both cases an insignificant change in 
the load q as the point C is approached will result in an abrupt change in the elasticity zone 
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